Câu hỏi

21/11/2024 2

Cho hàm số y = f(x) = |x|.

a) Tính các giới hạn limx0+fxf0x0 và limx0fxf0x0.

Từ đó suy ra hàm số không có đạo hàm tại x = 0.

b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại x = 0 (xem hình 1.4).

Danh mục liên quan

  • Trắc Nghiệm Toán 12
  • Lời giải của Vua Trắc Nghiệm

    Cho hàm số y = f(x) = |x|. a) Tính các giới hạn lim x tới 0 + f(x) - f(0) / x-0 (ảnh 1)

    b) Theo định nghĩa, hàm số f(x) đạt cực tiểu tại x = x0 nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x ∈ (x0 – h; x0 + h) và x ≠ x0 .

    Ở đây, x0 = 0. Ta sẽ chứng minh rằng tồn tại số h > 0 sao cho f(x) > f(0) với mọi x ∈ (– h; h).

    Với mọi x ∈ (– h; h), ta có |x| < h.

    Mà |x| > 0, với mọi x ≠ 0. Do đó f(x) = |x| > 0 = f(0), với mọi x ∈ (– h; h) và x ≠ 0.

    Vậy ta chứng minh được rằng với mọi x ∈ (– h; h) và x ≠ x0, f(x) > f(0). Điều này chứng tỏ rằng hàm số có cực tiểu tại x = 0.

    Câu hỏi liên quan