Câu hỏi

17/12/2024 1

Tính các tích phân sau:

a) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \);

b) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} – \frac{1}{{{{\sin }^2}x}}} \right)dx} \).

Danh mục liên quan

  • Trắc Nghiệm Toán 12
  • Lời giải của Vua Trắc Nghiệm

    a) Ta có \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \) = \(\int\limits_0^{\frac{\pi }{2}} {3\cos xdx} + \int\limits_0^{\frac{\pi }{2}} {2\sin xdx} \)

    = \(\left. {3\sin x} \right|_0^{^{\frac{\pi }{2}}} – \left. {2\cos x} \right|_0^{^{\frac{\pi }{2}}}\)

    = \(3\sin \frac{\pi }{2} – 3\sin 0 – 2\cos \frac{\pi }{2} + 2\cos 0\)

    = 5.

    b) Ta có \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} – \frac{1}{{{{\sin }^2}x}}} \right)dx} \) = \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} – \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\sin }^2}x}}dx} \)

    = \(\left. {\tan x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}} – \left. {\cot x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}}\)

    = \(\tan \frac{\pi }{4} – \tan \frac{\pi }{6} – \cot \frac{\pi }{4} + \cot \frac{\pi }{6}\)

    = 2 − \(\frac{{4\sqrt 3 }}{3}\).

    Câu hỏi liên quan