Câu hỏi
05/12/2024 9Trong không gian Oxyz, cho hình lăng trụ tam giác OAB.O’A’B’ có A(1; 1; 7), B(2; 4; 7) và điểm O’ thuộc tia Ox sao cho OO’ = 3.
a) Tìm tọa độ của vectơ \(\overrightarrow {OO’} \).
b) Tìm tọa độ của các điểm O’; A’ và B’.
Câu hỏi thuộc đề thi
Danh mục liên quan
Lời giải của Vua Trắc Nghiệm
a) Có điểm O‘ thuộc tia Ox và OO‘ = 3 hay ta có: \(\overrightarrow {OO’} = 3\overrightarrow i \) = (3; 0; 0).
Do đó \(\overrightarrow {OO’} \) = (3; 0; 0).
b) Từ a, ta có O‘(3; 0; 0).
Gọi tọa độ điểm A‘(x1; y1; z1), B‘(x2; y2; z2)
Ta có OAB.O‘A‘B‘ là lăng trụ tam giác nên \(\overrightarrow {OO’} \) = \(\overrightarrow {AA’} \) = \(\overrightarrow {BB’} \)
Vì vậy, ta có: \(\left\{ \begin{array}{l}{x_1} – 1 = 3\\{y_1} – 1 = 0\\{z_1} – 7 = 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}{x_1} = 4\\{y_1} = 1\\{z_1} = 7\end{array} \right.\) ⇒ A‘(4; 1; 7).
\(\left\{ \begin{array}{l}{x_2} – 2 = 3\\{y_2} – 4 = 0\\{z_2} – 7 = 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}{x_2} = 5\\{y_2} = 4\\{z_2} = 7\end{array} \right.\) ⇒ B‘(5; 4; 7).