Câu hỏi

16/12/2024 1

Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm tùy ý của f(x) trên đoạn [a; b]. Chứng minh rằng F(b) – F(a) = G(b) – G(a).

Danh mục liên quan

  • Trắc Nghiệm Toán 12
  • Lời giải của Vua Trắc Nghiệm

    Vì F(x) và G(x) là hai nguyên hàm của f(x) trên đoạn [a; b] nên tồn tại một hằng số C sao cho F(x) = G(x) + C.

    Do đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).

    Câu hỏi liên quan