Câu hỏi
22/11/2024 11Một chiếc xe nhỏ chuyển động không có ma sát, gắn vào tường bằng một lò xo (xem hình vẽ), được kéo ra khỏi vị trí đứng yên 10 cm rồi thả ra tại thời điểm ban đầu t = 0 giây để chuyển động trong 4 giây. Vị trí s (cm) tại thời điểm t giây là s = 10cosπt.
a) Tốc độ lớn nhất của xe là bao nhiêu? Khi nào xe chuyển động với tốc độ như vậy, khi đó xe đang ở vị trí nào và gia tốc lúc đó có độ lớn là bao nhiêu?
b) Xe ở đâu khi độ lớn gia tốc là lớn nhất? Khi đó vận tốc của xe là bao nhiêu?
Câu hỏi thuộc đề thi
Danh mục liên quan
Lời giải của Vua Trắc Nghiệm
a) Vận tốc của xe là v(t) = s‘(t) = −10πsinπt (cm/s).
Vậy, gia tốc của xe là a(t) = v‘(t) = −10π2cosπt (cm/s2).
Ta có: v‘(t) = 0 ⇔ t ∈ \(\left\{ {\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2}} \right\}\) (do t ∈ [0; 4]).
Mặt khác, v(0) = v(4) = 0; v\(\left( {\frac{1}{2}} \right)\) = v\(\left( {\frac{3}{2}} \right)\) = v\(\left( {\frac{5}{2}} \right)\) = v\(\left( {\frac{7}{2}} \right)\) = −10π.
Tốc độ của độ lớn của vận tốc, tức là \(\left| {v\left( t \right)} \right|\).
Do đó tốc độ lớn nhất của xe là 10π (cm/s), đạt được tại các thời điểm: \(\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2}\) giây.
Tại các thời điểm đó, xe đều có gia tốc bằng 0 và tại các vị trí s = 0 (tức là ở vị trí xe đứng yên, khi mà chưa kéo lò xo).
b) Ta có: a‘(t) = 10π3sinπt
a‘(t) = 0 ⇔ t ∈ {0; 1; 2; 3; 4}.
Khi đó, a(0) = a(2) = a(4) = −10π2; a(1) = a(3) = 10π2.
Độ lớn gia tốc của xe là \[\left| {a\left( t \right)} \right|\].
Vậy, độ lớn gia tốc là lớn nhất tại các thời điểm 0; 1; 2; 3; 4 giây.
Khi t = 0; 2; 4 giây, xe ở vị trí s = 10 (cm); khi t = 1; 3 giây, xe ở vị trí s = −10 (cm).
Do độ lớn của gia tốc của xe lớn nhất tại các vị trí s = 10 (cm) hoặc s = −10 (cm) (tức là khi xe ở mép phải hoặc mép trái của quãng đường dao động) và tại các vị trí đó, vận tốc của xe đều bằng 0.