Câu hỏi
17/12/2024 1Xét hình phẳng giới hạn bởi các đường
a) Tính diện tích hình phẳng.
b) Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng xung quanh trục Ox.
Câu hỏi thuộc đề thi
Danh mục liên quan
Lời giải của Vua Trắc Nghiệm
a) Ta có hình biểu diễn diện tích hình phẳng cần tìm như sau:
Quan sát đồ thị, ta thấy đồ thị hàm số y = \(\sqrt x \) nằm phía trên đồ thị hàm số y = \(\frac{{{x^2}}}{8}\) so với trục hoành, với x ∈ [0; 4].
Diện tích cần tính là:
S = \(\int\limits_0^4 {\left| {\sqrt x – \frac{{{x^2}}}{8}} \right|} dx = \int\limits_0^4 {\left( {\sqrt x – \frac{{{x^2}}}{8}} \right)} dx = \left. {\left( {\frac{2}{3}x\sqrt x – \frac{{{x^3}}}{{24}}} \right)} \right|_0^4 = \frac{8}{3}\).
b) Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = \(\sqrt x \),
y = 0, x = 0, x = 4 quanh trục Ox là:
V1 = \(\pi \int\limits_0^4 {{{\left( {\sqrt x } \right)}^2}} dx = \pi \int\limits_0^4 {xdx = \left. {\frac{{\pi {x^2}}}{2}} \right|_0^4 = 8\pi .} \)
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = \(\frac{{{x^2}}}{8}\),
y = 0, x = 0, x = 2 quanh trục Ox là:
V2 = \(\pi \int\limits_0^4 {{{\left( {\frac{{{x^2}}}{8}} \right)}^2}} dx = \pi \int\limits_0^4 {\frac{{{x^4}}}{{64}}dx = \left. {\frac{{\pi {x^5}}}{{320}}} \right|_0^4 = \frac{{16\pi }}{5}.} \)
Thể tích cần tính là:
V = V1 – V2 = \(8\pi – \frac{{16\pi }}{5} = \frac{{24\pi }}{5}\).