Câu hỏi
12/12/2024 10Doanh thu bán hàng của một công ty khi bán một loại sản phẩn là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số MR(x) = R'(x). Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi MR(x) = 300 – 0,1x, ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bán 1000 con chíp.
Câu hỏi thuộc đề thi
Danh mục liên quan
Lời giải của Vua Trắc Nghiệm
Doanh thu của công ty là \(R\left( x \right) = \int {\left( {300 – 0,1x} \right)dx = 300x – \frac{1}{{20}}{x^2} + C} \).
Ta có R(0) = 0 nên C = 0.
Vì vậy \[R\left( x \right) = 300x – \frac{1}{{20}}{x^2}\].
Doanh thu của công ty khi đã bán 1000 con chíp là: \[R\left( {1000} \right) = 300.1000 – \frac{1}{{20}}{.1000^2} = 250000\] triệu đồng.
Câu hỏi liên quan
a) Tính đạo hàm của các hàm số sau và nêu kết quả tương ứng vào bảng dưới đây.
F(x) | sinx | cosx | tanx | cotx |
F'(x) | ? | ? | ? | ? |
b) Sử dụng kết quả ở câu a, tìm nguyên hàm của các hàm số cho trong bảng dưới đây.
f(x) | cosx | sinx | \(\frac{1}{{{{\cos }^2}x}}\) | \(\frac{1}{{{{\sin }^2}x}}\) |
\(\int {f\left( x \right)} dx\) | ? | ? | ? | ? |
a) Tính đạo hàm của các hàm số sau và nêu kết quả tương ứng vào bảng dưới đây.
F(x) | ex | axlna0<a≠1 |
F'(x) | ? | ? |
b) Sử dụng kết quả ở câu a, tìm nguyên hàm của các hàm số cho trong bảng dưới đây.
f(x) | ex | \({a^x}\left( {0 < a \ne 1} \right)\) |
\(\int {f\left( x \right)dx} \) | ? | ? |