Câu hỏi

12/12/2024 5

Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?

Danh mục liên quan

  • Trắc Nghiệm Toán 12
  • Lời giải của Vua Trắc Nghiệm

    Gọi S(t) (0 ≤ t ≤ 30) là quãng đường máy bay di chuyển được sau t giây kể từ lúc bắt đầu chạy đà.

    Ta có v(t) = S'(t). Vì vậy, S(t) là một nguyên hàm của hàm số vận tốc v(t). Sử dụng tính chất của nguyên hàm ta được \(S\left( t \right) = \int {v(t)dt = \int {\left( {5 + 3t} \right)dt} = 5\int {dt + 3\int {tdt} = 5t + \frac{3}{2}{t^2} + C.} } \)

    Theo giả thiết, S(0) = 0 nên C = 0 và ta được\(S\left( t \right) = \frac{3}{2}{t^2} + 5t\;\left( m \right)\)..

    Máy bay rời đường băng khi t = 30 giây nên\(S = S\left( {30} \right) = \frac{3}{2}{.30^2} + 5.30 = 1500\;\left( m \right)\)..

    Do đó quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là S = 1500 m.

    Câu hỏi liên quan