Câu hỏi

17/12/2024 2

Xét hình phẳng giới hạn bởi đồ thị hàm số fx=12x, trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).

a) Tính thể tích V của khối nón.

b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là S(x) = πf2(x). Tính π04f2xdx và so sánh với V.

Danh mục liên quan

  • Trắc Nghiệm Toán 12
  • Lời giải của Vua Trắc Nghiệm

    a) Ta có chiều cao của khối nón là h = 4, bán kính đáy của khối nón là R = 2.

    Vì vậy thể tích của khối nón là\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\).

    b)

    Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là \(f\left( x \right) = \frac{1}{2}x\).

    Khi đó diện tích mặt cắt là \(S\left( x \right) = \pi {f^2}\left( x \right) = \frac{\pi }{4}{x^2}\).

    Ta có \(\pi \int\limits_0^4 {{f^2}\left( x \right)} dx\)\( = \pi \int\limits_0^4 {\frac{{{x^2}}}{4}} dx\)\( = \frac{\pi }{4}\int\limits_0^4 {{x^2}} dx\)\( = \left. {\left( {\frac{\pi }{4}.\frac{{{x^3}}}{3}} \right)} \right|_0^4 = \frac{{16\pi }}{3}\).

    Do đó \(V = \pi \int\limits_0^4 {{f^2}\left( x \right)} dx\).

    Câu hỏi liên quan