06/12/2024
Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) tạo với nhau một góc bằng 60°. Biết \(\left| {\overrightarrow a } \right|\) = 2 và \(\left| {\overrightarrow b } \right| = 3\), tính \(\left| {\overrightarrow a + \overrightarrow b } \right|\) và \(\left| {\overrightarrow a – \overrightarrow b } \right|\).
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a \) = (−4; 6; 7), \(\overrightarrow b \) = (1; 0; −3) và \(\overrightarrow c \) = (8; 7; 2). Tính tọa độ của các vectơ sau:
a) \(\overrightarrow m = 2\overrightarrow a – 3\overrightarrow b + \overrightarrow c \);
b) \(\overrightarrow n = \overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \).
Cho hình tứ diện ABCD có ba cạnh AB, AC, AD đôi một vuông góc và AB = 3, AC = 4, AD = 6. Xét hệ tọa độ Oxyz có gốc O trùng với đỉnh A và các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AC, AD. Gọi E, F lần lượt là trọng tâm của các tam giác ABD và ACD.
a) Tìm tọa độ của các đỉnh B, C, D.
b) Tìm tọa độ của các điểm E, F.
c) Chứng minh rằng AD vuông góc với EF.
Trong không gian Oxyz, cho hai điểm A(3; −1; m) và B(m; 4; m).
a) Tính côsin của góc \(\widehat {AOB}\) theo m.
b) Xác định tất cả các giá trị của m để \(\widehat {AOB}\) là góc nhọn.
Trên phần mềm GeoGebra 3D với các trục tọa độ được dựng sẵn, bạn Minh vẽ hai hình hộp chữ nhật với một số cạnh được đặt dọc theo các trục tọa độ. Ba đỉnh thuộc mặt dưới của hình hộp thứ nhất lần lượt là O(0; 0; 0), A(2; 0; 0), B(0; 3; 0). Biết hình hộp thứ hai ở vị trí cao hơn hình hộp thứ nhất 5 đơn vị, xác định tọa độ của các đỉnh O’, A’, B’ thuộc mặt dưới của hình hộp thứ hai.
Một chiếc gậy có chiều dài 2,5 m được đặt trong góc phòng như hình sau đây. Một đầu gậy nằm trên sàn, cách hai bức tường lần lượt là 1 m và 0,8 m. Đầu còn lại của chiếc gậy nằm trên mép tường.
a) Hãy lập một hệ tọa độ Oxyz phù hợp và tìm tọa độ của đầu gậy nằm trên sàn nhà.
b) Tính khoảng cách từ đầu gậy trên mép tường đến sàn nhà.
Cho tứ diện ABCD. Lấy G là trọng tâm của tam giác BCD. Khẳng định nào sau đây là sai?
Cho hình hộp ABCD.A’B’C’D’. Lấy M là trung điểm của đoạn thẳng CC’. Vectơ AM→ bằng
Cho hình hộp ABCD.A’B’C’D’. Khẳng định nào dưới đây là sai?
Cho tứ diện đều ABCD có độ dài cạnh bằng a, gọi M là trung điểm của đoạn thẳng CD. Tích vô hướng AB→.AM→ bằng
Trong không gian Oxyz, cho a→=1;−2;2, b→=−2;0;3. Khẳng định nào dưới đây là sai?
Trong không gian Oxyz, cho hình bình hành ABCD có A(−1; 0; 3), B(2; 1; −1) và C3;2;2. Tọa độ của điểm D là
Trong không gian Oxyz, cho A(1; 0; −1), B(0; −1; 2) và G(2; 1; 0). Biết tam giác ABC có trọng tâm là điểm G. Tọa độ của điểm C là
Trong không gian Oxyz, cho a→=2;1;−3;−3, b→=−2;−1;2. Tích vô hướng a→.b→ bằng
Trong không gian Oxyz, cho a→=2;1;−2,b→=0;−1;1. Góc giữa hai vectơ a→,b→ bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: SA→+SC→=SB→+SD→
Cho hình hộp ABCD.A’B’C’D’, gọi G là trọng tâm của tam giác BDA’.
a) Biểu diễn AG→ theo AB→,AD→ và AA‘→.
b) Từ câu a, hãy chứng tỏ ba điểm A, G và C’ thẳng hàng.
Trong không gian Oxyz, cho các điểm A(2; −1; 3), B(1; 1; −1) và C(−1; 0; 2).
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm M thuộc trục Oz sao cho đường thẳng BM vuông góc với đường thẳng AC.
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm A(2; 3; 1), C(−1; 2; 3) và O'(1; −2; 2). Tìm tọa độ các đỉnh còn lại của hình hộp.
Trong không gian Oxyz, cho các điểm A(4; 2; −1), B(1; −1; 2) và C(0; −2; 3).
a) Tìm tọa độ của vectơ AB→ và tính độ dài đoạn thẳng AB.
b) Tìm tọa độ điểm M sao cho AB→+CM→=0→
c) Tìm tọa độ điểm N thuộc mặt phẳng (Oxy), sao cho A, B, N thẳng hàng.
Hình 2.53 minh họa một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m.
a) Lập một hệ trục tọa độ Oxyz phù hợp và xác định tọa độ của bóng đèn lúc đầu và sau khi di chuyển.
b) Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a \) = (3; 0; 4), \(\overrightarrow b \) = (2; 7; 7) và \(\overrightarrow c \) = (2; 7; 2).
a) Tìm tọa độ của các vectơ \(\overrightarrow a – \overrightarrow b + \overrightarrow c \) và \(2\overrightarrow a + 3\overrightarrow b – 4\overrightarrow c \).
b) Tính các tích vô hướng \(\left( { – \overrightarrow a } \right).\overrightarrow b \) và \(\left( {3\overrightarrow a } \right)\).\(\overrightarrow c \).
c) Tính côsin của các góc \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) và \(\left( {\overrightarrow a ,\overrightarrow c } \right)\).
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a \) = (m; 3; 6) và \(\overrightarrow b \) = (1; 2; 3). Xác định giá trị của m trong những trường hợp sau:
a) \(\overrightarrow a – 2\overrightarrow b \) = (3; −1; 0);
b) \(\overrightarrow a .\overrightarrow b \) = 10;
c) \(\left| {\overrightarrow a } \right|\) = 9.
Trong không gian Oxyz, cho tứ diện ABCD với A(1; 3; −3), B(2; 0; 5), C(6; 9; −5) và D(−1; −4; 3).
a) Tìm tọa độ trọng tâm I của tam giác ABC.
b) Tìm tọa độ của điểm G thuộc đoạn thẳng DI sao cho DG = 3IG.
Cho tứ diện ABCD. Trọng tâm G của tứ diện là điểm duy nhất thỏa mãn đẳng thức \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Chứng minh rằng tọa độ của điểm G được cho bởi công thức:
xG = \(\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\);
yG = \(\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\);
zG = \(\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\).
Trong không gian Oxyz, cho tam giác ABC với A(3; 5; 2), B(0; 6; 2) và C(2; 3; 6). Hãy giải tam giác ABC.
Cho hình lập phương ABCD.A’B’C’D’ có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ Oxyz gắn với hình lập phương như hình vẽ bên.
a) Tìm tọa độ các đỉnh của hình lập phương.
b) Tìm tọa độ trọng tâm G của tam giác B’CD’.
c) Chứng minh rằng ba điểm O, G, A thẳng hàng.
Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của mỗi chiếc cột lần lượt là 3 m và 2 m. Xét hệ tọa độ Oxyz sao cho mặt phẳng (Oxy) trùng với mặt sân, trục Oz hướng thẳng đứng lên trời. Đơn vị trong hệ tọa độ Oxyz được lấy theo mét.
a) Biết rằng chân của hai cột đó có tọa độ lần lượt là (8; 5; 0) và (3; 2; 0), hãy tìm tọa độ điểm đầu của mỗi cột.
b) Thầy giáo dự định căng một sợi dây nối hai đầu của hai cột. Hỏi sợi dây cần có độ dài tối thiểu là khoảng bao nhiêu mét?
Hình bên mô tả hai bức tường gạch được xây vuông góc với nhau và cùng vuông góc với mặt đất. Một người thợ xây căng dây giữa hai bức tường. Đầu A của sợi dây nằm trên bức tường thứ nhất, cách bức tường thứ hai là 3 m và cách mặt đất là 1,2 m. Đầu B của sợi dây nằm trên bức tường thứ hai, cách bức tường thứ nhất là 1 m và cách mặt đất là 2 m.
a) Hãy lập một hệ trục tọa độ phù hợp và tìm tọa độ của hai đầu A, B trong hệ tọa độ đó.
b) Tính độ dài của sợi dây được căng.
Trong không gian Oxyz, cho ba vectơ u→=1;8;6; v→=−1;3;−2 và w→=0;5;4. Tìm tọa độ của vectơ u→−2v→+w→.
Trong không gian Oxyz, cho tam giác ABC có A(xA; yA; zA), B(xB; yB; zB) và C(xC; yC; zC).
a) Gọi M là trung điểm của đoạn thẳng AB. Tìm tọa độ của M theo tọa độ của A và B.
b) Gọi G là trọng tâm của tam giác ABC. Tìm tọa độ của G theo tọa độ của A, B, C.
Trong không gian Oxyz, cho ba điểm A(2; 9; −1), B(9; 4; 5) và G(3; 0; 4). Tìm tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm.
Trong không gian Oxyz, cho A(0; 2; 1), B(3; −2; 1) và C(−2; 5; 7).
a) Tính chu vi của tam giác ABC.
b) Tính BAC^
Với các giả thiết như trong Ví dụ 5, hãy xác định tọa độ của chiếc máy bay sau 10 phút tiếp theo (tính từ thời điểm máy bay ở điểm B).
Trong tình huống mở đầu, hãy tính độ lớn của góc α.
Trong Ví dụ 7, khinh khí cầu thứ nhất hay thứ hai ở xa điểm xuất phát hơn? Giải thích vì sao.
Trong không gian Oxyz, cho ba điểm M(−4; 3; 3), N(4; −4; 2) và P(3; 6; −1).
a) Tìm tọa độ của các vectơ MN→,MP→, từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.
b) Tìm tọa độ của vectơ NM→+NP→, từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.
c) Tính chu vi của hình bình hành MNPQ.
Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8 m, chiều rộng là 6 m và chiều cao là 3 m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục tọa độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét (H.2.51). Hãy tìm tọa độ của điểm treo đèn.
Trong không gian, xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên biển, mặt phẳng (Oxy) trùng với mặt biển (được coi là phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời (H.2.52). Đơn vị đo trong không gian Oxyz lấy theo kilômét. Một chiếc ra đa đặt tại giàn khoan có phạm vi theo dõi là 30 km. Hỏi ra đa có thể phát hiện được một chiếc tàu thám hiểm có tọa độ là (25; 15; −10) đối với hệ tọa độ nói trên hay không? Hãy giải thích vì sao.
Nếu tọa độ của vectơ a→ là (x; y; z) thì tọa độ của vectơ đối của a→ là gì?
Những căn nhà gỗ trong Hình 2.47a được phác thảo dưới dạng một hình lăng trụ đứng tam giác OAB.O’A’B’ như trong Hình 2.47b. Với hệ trục tọa độ Oxyz thể hiện như Hình 2.47b (đơn vị đo lấy theo centimét), hai điểm A’ và B’ có tọa độ lần lượt là (240; 450; 0) và (120; 450; 300). Từ những thông tin trên, có thể tính được kích thước mỗi chiều của những căn nhà gỗ không?
05/12/2024
Cho hình hộp chữ nhật ABCD.A‘B‘C‘D‘. Có thể lập hệ tọa độ Oxyz thỏa mãn một trong các điều kiện sau đây hay không? Giải thích vì sao.
a) Gốc O trùng với đỉnh A, mặt phẳng (Oxy) trùng với mặt phẳng (A‘B‘C‘D‘).
b) Mặt phẳng (Oxy) trùng với mặt phẳng (ABCD) và mặt phẳng (Oyz) trùng với mặt phẳng (ABC‘D‘).
c) Mặt phẳng (Oxy) trùng với mặt phẳng (ABCD), trục Oz trùng với đường thẳng CC‘.
Trong không gian Oxyz, xác định tọa độ của điểm A trong mỗi trường hợp sau:
a) A nằm trên tia Oy và OA = 3;
b) A nằm trên tia đối của tia Oz và OA = 5;
c) A nằm trong góc phần tư thứ nhất của mặt phẳng (Oxy), khoảng cách từ A đến Ox và Oy lần lượt là 5 và 8.
Trong không gian Oxyz, xác định tọa độ của vectơ \(\overrightarrow {AB} \) trong mỗi trường hợp sau:
a) \(\overrightarrow {AB} = \overrightarrow 0 \);
b) \(\overrightarrow {AB} = – 2\overrightarrow k \);
c) \(\overrightarrow {AB} = 3\overrightarrow i – 5\overrightarrow j + \overrightarrow k .\)
Trong không gian Oxyz, cho ba điểm
A(4; 5; −1), B(2; 5; −1), C(0; 0; 3).
a) Tìm tọa độ của vectơ \(\overrightarrow {AB} \), từ đó suy ra đường thẳng AB song song với trục Ox.
b) Biểu thị vectơ \(\overrightarrow {OC} \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó suy ra điểm C thuộc tia Oz.
Trong không gian Oxyz, cho hình lăng trụ tam giác OAB.O’A’B’ có A(1; 1; 7), B(2; 4; 7) và điểm O’ thuộc tia Ox sao cho OO’ = 3.
a) Tìm tọa độ của vectơ \(\overrightarrow {OO’} \).
b) Tìm tọa độ của các điểm O’; A’ và B’.
Cho hình tứ giác đều S.ABCD có chiều cao bằng 5 và độ dài cạnh đáy bằng 4. Hãy xác định tọa độ các điểm S, A, B, C, D đối với hệ tọa độ Oxyz có gốc O trùng với tâm của hình vuông ABCD, tia Ox chứa B, tia Oy chứa C và tia Oz chứa S.
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A‘B‘C‘D‘ có đỉnh A trùng với gốc O và các đỉnh D, B, A‘ có tọa độ lần lượt là (3; 0; 0), (0; −1; 0), (0; 0; −2). Xác định tọa độ của các đỉnh còn lại của hình hộp chữ nhật.
Ở mỗi góc sân bóng đá thường được cắm một cột cờ vuông góc với mặt sân như hình bên.
a) Có thể thiết lập một hệ trục tọa độ Oxyz với gốc O là chân cột cờ, hai trục Ox, Oy lần lượt trùng với hai vạch kẻ sơn và tia Oz trùng với cột cờ hay không? Giải thích vì sao.
b) Giả sử cột cờ có chiều cao 1,5 m. Hãy xác định tọa độ của điểm bắt đầu cột cờ đối với hệ tọa độ ở câu a (đơn vị đo trong không gian lấy theo mét).
Trong không gian xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên biển, mặt phẳng (Oxy) trùng với mặt biển với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Đơn vị đo được lấy theo kilômét. Tại giàn khoan người ta đặt một chiếc radar để theo dõi hành trình của một chiếc tàu ngầm hoạt động trong khu vực gần giàn khoan.
a) Hãy giải thích vì sao tọa độ của tàu ngầm luôn có dạng (x; y; z) với z ≤ 0.
b) Khi nào thì tọa độ của chiếc tàu ngầm là (x; y; 0)?
Xin chào các bạn học sinh tại Vuatracnghiem.vn !
Chúng tôi luôn nỗ lực để mang đến cho các bạn những nội dung chất lượng và hoàn toàn miễn phí. Tuy nhiên, để duy trì và phát triển trang web đôi khi sẽ có một số quảng cáo xuất hiện và chúng tôi hiểu điều này có thể gây phiền toái. Mong các bạn thông cảm, vì điều này giúp chúng tôi có thêm kinh phí và động lực để tiếp tục phục vụ các bạn tốt hơn. Cảm ơn sự ủng hộ của các bạn!